Ground Truth of Passive Microwave Radiative Transfer on Vegetated Land Surfaces

نویسندگان

  • Yohei Sawada
  • Hiroyuki Tsutsui
  • Toshio Koike
چکیده

In this paper, we implemented the in-situ observation of surface soil moisture (SSM), vegetation water content (VWC), and microwave brightness temperatures. By analyzing this in-situ observation dataset and the numerical simulation, we investigated the source of the uncertainty of the current algorithms for Advanced Microwave Scanning Radiometer for Earth observation system (AMSR-E) and AMSR2 to retrieve SSM and vegetation dynamics. Our findings are: (1) the microwave radiative transfer at C-band and X-band is not strongly affected by the shape of vegetation and the existing algorithm can be applied to a wide variety of plant types; (2) the diversity of surface soil roughness significantly affects the indices which are used by the current algorithms and addressing the uncertainty of surface soil roughness is necessary to improve the retrieval algorithms; (3) At C-band, SSM of the homogeneous vegetated land surfaces can be detected only when their VWC is less than approximately 0.25 (kg/m2); (4) the state-of-the-art Radiative Transfer Model (RTM) can predict our observed dataset although we have some biases in simulating brightness temperatures at a higher frequency. The new in-situ observation dataset produced by this study can be the guideline for both developers and users of passive microwave land observations to consider the uncertainties of their products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Spatial Scale on Soil Moisture Retrieval From Passive Microwave Sensors

Near-surface soil moisture (SM) retrieval from Lband (1.4 GHz) passive microwave brightness temperature (TB) measurements has been demonstrated from tower and airborne experiments (Wang 1983, Jackson et al. 1999). Current passive microwave techniques for SM retrieval are based on inversion of radiative transfer models which simulate the microwave emission from the earth surface given a specifie...

متن کامل

A 3-dimensional Radiative-transfer Hyperspectral Image Simulator for Algorithm Validation

We are currently developing a high model fidelity HyperSpectral Image simulation software package. It is based on a Direct Simulation Monte Carlo approach for modeling 3D atmospheric radiative transport, as well as spatially inhomogeneous surfaces including surface BRDF effects. “Ground truth” is accurately known through input specification of surface and atmospheric properties, and it is pract...

متن کامل

Modeling and inversion in thermal infrared remote sensing over vegetated land surfaces

Thermal Infra Red (TIR) Remote sensing allow spatializing various land surface temperatures: ensemble brightness, radiometric and aerodynamic temperatures, soil and vegetation temperatures optionally sunlit and shaded, and canopy temperature profile. These are of interest for monitoring vegetated land surface processes: heat and mass exchanges, soil respiration and vegetation physiological acti...

متن کامل

Heat Transfer Study of Convective-Radiative Fin under the influence of Magnetic Field using Legendre Wavelet Collocation Method

The development and production of high performance equipment necessitate the use of passive cooling technology. In this paper, heat transfer study of convective-radiative straight fin with temperature-dependent thermal conductivity under the influence of magnetic field is carried out using Legendre wavelet collocation method. The numerical solution is used to investigate the effects of magnetic...

متن کامل

Modeling the Passive Microwave Remote Sensing of Snow Using Dense Media Radiative Transfer Theory with Nmm3d Rough- Surface Boundary Conditions

The effects of volume scattering and rough-surface scattering in passive microwave remote sensing are treated. The volumescattering model is based on dense medium radiative transfer (DMRT) theory with quasicrystalline approximation (QCA) for densely distributed sticky particles. The rough-surface bistatic scattering and emission are modeled using the numerical Maxwell model of 3D simulations (N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017